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In this study, the linear stability of mixed-convection flow in a vertical channel is 
investigated for both buoyancy-assisted and -opposed conditions. The disturbance 
momentum and energy equations were solved by the Galerkin method. In addition to 
the case with a zero heat flux perturbation boundary condition, we also examined the 
zero temperature perturbation boundary condition. In general, the mixed-convection 
flow is strongly destabilized by the heat transfer and therefore the fully developed 
heated flow is very unstable and very difficult to maintain in nature. For buoyancy- 
assisted flow, the two-dimensional disturbances dominate, while for buoyancy- 
opposed flow, the Rayleigh-Taylor instability prevails for zero heat flux perturbation 
boundary condition, and for the zero temperature perturbation on the boundaries the 
two-dimensional disturbances dominate except at lower Reynolds numbers where the 
Rayleigh-Taylor instability dominates again. The instability characteristics of 
buoyancy-assisted flow are found to be strongly dependent on the Prandtl number 
whereas the Prandtl number is a weak parameter for buoyancy-opposed flow. Also the 
least-stable disturbances are nearly one-dimensional for liquids and heavy oils at 
high Reynolds numbers in buoyancy-assisted flows. 

From an energy budget analysis, we found that the thermal-buoyant instability is 
the dominant type for buoyancy-assisted flow. In buoyancy-opposed flow, under the 
zero temperature perturbation boundary condition the Rayleigh-Taylor instability 
dominates for low-Reynolds-number flow and then the thermal-shear instability takes 
over for the higher Reynolds numbers whereas the Rayleigh-Taylor instability 
dominates solely for the zero heat flux perturbation boundary condition. It is found 
that the instability characteristics for some cases of channel flow in this study are signi- 
ficantly different from previous results for heated annulus and pipe flows. Based 
on the distinctly different wave speed characteristics and disturbance amplification 
rates, we offer some suggestions regarding the totally different laminar-turbulent 
transition patterns for buoyancy-assisted and -opposed flows. 

1. Introduction 
In engineering applications, most flow are non-isothermal. Mixed convection in 

vertical channels, tubes and ducts has been extensively investigated because of its 
applications to nuclear reactors, heat exchangers, electronic equipment and other areas 
of practical interests. In engineering, the assumption of a fully developed flow is often 
used to simplify the governing partial differential equations of a laminar flow such that 
ordinary differential equations result. Thus an analytic solution of the laminar flow is 
obtained and the characteristics of fluid flow and heat transfer can be easily analysed. 
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But the flows that occur in nature must not only obey those simplified fluid dynamics 
and heat transfer equations, but also must be stable in order to be represented by the 
simple fully developed flow solutions, otherwise different forms of convective flow will 
occur because of the flow instability and transition. 

Many previously published research results seem to indicate that non-isothermal 
flow instability and transition differ substantially from those of an isothermal flow 
(Gebhart et al. 1988; Yao 1987a, b). For example, at low Reynolds numbers mixed- 
convection pipe flows frequently become unstable even under mild heating conditions 
(Scheele & Hanratty 1962; Kemeny & Somers 1962). The experimental results by 
Hanratty, Rosen & Kabel (1958), Scheele, Rosen & Hanratty (1960) and Kemeny & 
Somers (1962) all showed that heated vertical pipe flow can go through a flow transition 
at a Reynolds number as low as 30. Scheele & Hanratty (1962) observed that during 
the low-Reynolds-number flow transition the flow consisted mainly of large-scale, 
regular and periodic motions which were confirmed by Yao (1987~1, b) in a linear 
stability analysis. Yao found that the unstable flow is a double-spiral with wavelengths 
comparable to the pipe diameter and the motion is regular and periodic. Scheele & 
Hanratty (1962) also found that the temperature fluctuations of such low-Reynolds- 
number flows of water during transition in a vertical heated pipe are low-frequency and 
small-scale oscillations. Kemeny & Somers (1962) called such a very low-Reynolds- 
number transition flow ‘non-laminar flow’ to distinguish it from the turbulent flow and 
found that the Nusselt numbers of non-laminar flows can be 30% higher than those 
of laminar flow. A significant increase of the Nusselt number above those of laminar 
flows during low-Reynolds-number flow transition was also observed by Maitra & 
Raju (1975) in the mixed-convection flow of a heated vertical annulus. 

Sheele & Hanratty (1962) also noted that for heated upflow (buoyancy assisted) in 
a pipe the flow first becomes unstable when the velocity profiles develop points 
of inflection. Transition to an unsteady flow involves the gradual growth of small 
disturbances and therefore it is quite possible to have unstable flows without observing 
transition when the pipe is not long enough. For heated downflow (buoyancy 
opposed), transition to an unsteady flow is sudden and therefore transition occurs 
shortly after an unstable flow occurs. The experimental observation of Sheele & 
Hanratty (1962) was confirmed by a weakly nonlinear instability analysis of Rogers & 
Yao (1993 a) who found that heated upflow is supercritically unstable while heated 
downflow is potentially subcritically unstable. Furthermore, Sheele & Hanratty (1962) 
observed in their experiment that the stability depends primarily on the shape of the 
velocity profile which is modified by the heating and only secondarily depends on the 
Reynolds number, if at all. Recently, El-Genk & Rao (1990) reported some 
experimental results for buoyancy-induced instability in a vertical annulus for low- 
Reynolds-number flows. They found phenomena similar to those in a pipe. They stated 
that in buoyancy-assisted flow, three successive regions of stable laminar, local flow 
mixing and turbulent flows were observed, which indicates that the transition is 
gradual and represents a supercritically unstable flow. For buoyancy-opposed flow, 
the flow field consists of only stable laminar and turbulent regions, which means the 
transition is abrupt and the flow is subcritically unstable. 

The first theoretical work on this topic was reported by Yao (1987a, b), who 
performed a linear stability analysis for heated vertical pipe flow of water and found 
that the fully developed non-isothermal flow is highly unstable. The flow can become 
unstable when both the Rayleigh number > 75 and the Keynolds number > 40. The 
most unstable azimuthal wavenumber is unity. Yao and his associates have also 
recently reported important work on identifying linear thermal instabilities in a vertical 



The linear stability of' mixed convection in a vertical channel f low 31 

annulus (Yao & Rogers 1989~1, b, 1992; Rogers & Yao 1993 b ;  Rogers, Moulic & Yao 
1993) and in a vertical pipe (Rogers & Yao 1993a). Basically there are two sources of 
the thermal instabilities ~ shear production and thermal buoyant potential. For stably 
stratified flows with constant heat flux imposed on the wall, the type of instability is 
strongly depend on the Prandtl number. In the first type, which was found primarily 
for lower-Prandtl-number fluids, the instability is initiated when the basic-state 
velocity profile is distorted sufficiently to become unstable as a result of increased 
Rayleigh number or heating, but most of the kinetic energy for the instability comes 
from the shear production. They termed this category of flow thermal-shear instability. 
The second thermal instability, which dominates in higher-Prandtl-number fluids, 
obtains its kinetic energy primarily from thermal buoyant potential. This type is called 
thermal-buoyant instability. The thermal-buoyant instability is driven by buoyancy 
forces due to heating and is more sensitive to thermal effects as a disturbance of the 
buoyant force, induced by a temperature fluctuation, causes a disruption in the velocity 
field. The reason that the lower-Prandtl-number fluids do not exhibit thermal-buoyant 
instability is the lack of temperature fluctuations. In lower-Prandtl-number fluids, the 
temperature fluctuations are rapidly smoothed by conduction. For unstably stratified 
flows, the well-known Rayleigh- Taylor instability is dominant. Only at very large 
Prandtl number ( -  100) would the thermal-buoyant mode become active. At high 
Reynolds numbers, the shear instability prevails in annulus flow. 

The theoretical analyses of linear stability in isothermal channel flow have been well 
documented (Drazin & Reid 1981). The well-known results for the critical Reynolds 
number Re, = 5772.22 (based on the half-width of the channel and the maximum 
velocity) and wavenumber a,. = 1.02056 are provided by Orszag (1971), while 
isothermal pipe flow is absolutely stable for any infinitesimal disturbance. On the other 
hand, fully developed laminar flow of mixed convection in a vertical channel with a 
constant vertical temperature gradient imposed on walls was studied by Ostrach (1954) 
and Tao (1960), but the stability of this flow has not been investigated and reported in 
the open literature. Since the instability characteristics of heated channel flow are 
related to the understanding of transition and turbulence, in this paper we investigate 
those characteristics of mixed convection in a vertical channel flow. 

2. Formation 
The viscous flow investigated in this paper is mixed convection, which is driven by 

an external pressure gradient and also by a buoyancy force, between two parallel long 
vertical plates separated by a distance 2d. At the laminar state a constant heat flux 
condition is imposed on the walls and the heating level is identical for both walls. The 
gravitational force is aligned in the negative x-direction. A schematic of this system is 
given in figure 1. The dimensionless governing equations for continuity, momentum 
and energy can be written as 

v. v =  0, (1) 
c?V 1 Ra -+ V.VV = -VP+-V2V+-OHe,, 
C7t Re Re 

(V"- u), 
c?tl 1 -+ V-VO = ~ 

c?t Re Pr (3) 

where the coordinates are non-dimensionalized by the half-width of the channel d, the 
velocity (Vj by the mean laminar base velocity UB, the pressure (P) by pPB,  and the 
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I 

FIGURE 1. Schematic of the geometry and coordinate system 

time ( t )  by d/  0,. Also, p is the fluid density, e, is the unit vector in the x-direction, and 
(u, zi, w )  are the dimensionless velocity components in the streamwise (x), cross- 
streamwise ( y ,  perpendicular to the walls) and spanwise ( 2 )  directions, respectively. In 
the above, Re = UBd/v is the Reynolds number, where v is the fluid kinematic 
viscosity, and Pr = v / a  is the Prandtl number, where a is the thermal diffusivity. For 
a constant heat flux at the walls, Tao (1960) showed that the channel wall temperature 
increases or decreases linearly with x as T,(x) = TO + C, dx, where C, is a constant and 

is the upstream reference wall temperature. C, is positive for buoyancy-assisted flow 
and negative for buoyancy-opposed flow. Ra = gPC, d4/va is the Rayleigh number, 
where g is the gravitational acceleration and /3 is the thermal expansion coefficient; it 
is positive for buoyancy-assisted flow and is negative for buoyancy-opposed flow. The 
Boussinesq approximation is used here. 0 = (7'- T,)/C, d Re Pr is the dimensionless 
temperature, T being the instantaneous fluid temperature. 

2.1. Mean basepow 
The base flow is fully developed steady laminar flow, that is, it is a function of y only. 
By applying those assumptions, the above governing equations (2) and (3) can be 
reduced to 

dPB - Ra 1 d2UB 
dx Re Re dy2 ' 
- - - O B + - -  

-- - u,. 
dY 
d28, 

The associated boundary conditions are 

(4) 

U B = 0 , = 0  at y = + _ l .  (6) 
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The solutions of (4)-(6) for buoyancy-assisted flow are (Tao 1960) 

9 (7 4 E sinh k( 1 + y )  sink( 1 - y )  + sink( 1 + y )  sinhk( 1 - y )  #y 
8 - Ra1/2 cash 2k + cos 2k 

and E is related to the pressure gradient: 

(7 c) 
dPl3 E = Re ~ = - 2k R d i 2  (cosh 2k + cos 2k)/(sinh 2k - sin 2k). 
d .Y 
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The solutions of (4)-(6) for buoyancy-opposed flow are (Hanratty et al. 1958) 
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, (8a, b) 
coshmy cosmy 

and F is related to the pressure gradient: 

dPB - 2m3 F =  Re---- 
dx tanh m - tan m’ 

where k = Ra1I4/2/2 and m = (- Ra)lI4. The only parameter in (7) and (8) is Ra. The 
laminar base-flow velocity and temperature profiles for Ra = - 50, - 31.29, 0, 24.38 
and 250 are plotted in figures 2(a) and 2(b), respectively. The velocity profile starts to 
show inflection points when Ra 2 24.38 and the inflection points move towards the 
walls as the Rayleigh number increases for buoyancy-assisted flow. For [ Ra( 2 6.09 
in buoyancy-opposed flow, the velocity profile has points of inflection near the walls 
and the inflection points move towards the centre of the channel as the magnitude of 
the Rayleigh number (I Ra I) increases. At 1 Rat = 31.29, the velocity gradients at the 
walls become zero and reversals of flow occur near the walls for further increase of the 
Rayleigh number magnitude. 

2.2. Linear stability analysis 
In the linear stability analysis, infinitesimal disturbances are imposed on the fully 
developed laminar base flow; thus the velocity, pressure and temperature fields can be 
written as 

(9 a-c) 

where the prime denotes an infinitesimal disturbance. P = (u’, Y’, w’) where u’, Y’ and 
W‘ are the velocity disturbances in x-, y- ,  and z-directions, respectively. By substituting 
equation (9) into (1)-(3) and neglecting the higher-order terms, the linearized 
continuity, momentum and energy equations for the perturbed quantities become 

v.v‘=o, (10) 

V = UJy) ex + V‘, P = PB(x) +p’,  8 = O&) + O’, 

av 1 Ra 
at  Re Re -+ V’*V UB+ UB*VV‘ = -Vp’+-V2V’-i--OB’e,, 

(V28’- u’), 
aw aw deB- 1 
--+UB--+v’- - __ 
a t  ax dy RePr 

where VB = UB( y) e,. By using the usual normal mode form, the disturbances can be 
represented by 

? 
P’ = d(Y) e i(az+pz-act) , 8’ = &Y)ei(az+pz-act 1, (13a-c) V’ = p( y) ei(ax+pz-act) 

where p = (G ,  6, ~) with 6, 6 and 14 are the velocity components in the x-, y- and z- 
directions, respectively; CL (real) and /3 (real) are the wavenumbers in the x- and z- 
directions, respectively; c = c, + ic, is the complex wave speed. The growth or decay of 
the disturbance depends on ci.  The flow is stable, neutrally stable or unstable for 
c, < 0, ci = 0 or ci > 0, respectively. By substituting equation (13) into (10)-(12) and 
eliminating the pressure terms, the linearized stability equations become 
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1 Ra de  
Re dy 

-ia-- = -iac , (14) 

where $ = pzi - a$. The associated boundary conditions for non-permeable rigid walls 
with a constant heat flux are 

Equations (14)-( 16) and the corresponding boundary conditions constitute an 
eigenvalue problem. 

2.3. Numerical method 
The Galerkin method is used to solve the above coupled equations (14)-(16) and their 
associated boundary conditions. In this method, the test (weighted) functions are the 
same as the base (trial) functions. Thus 5, i and 4 are expanded as 

Lv 5 Lv 
6 = c a n  t-,(Y>> i = c bnLn(Y) ,  H" = c 4 z M Y ) .  (1 8 U-C) 

n=o n=o n = o  

We adopt the base function proposed by Singer, Ferziger & Reed (1989) for ij. The base 
functions for ?j and have different forms in order to satisfy their respective boundary 
conditions. They are 

(184  e> U Y )  = (1 -Y2Y P,(Y)? L ( Y )  = (1 -Y2) P,(Y)> 

The base function $,(y) given in equation ( I  8 f )  which satisfies the zero-heat-flux 
perturbation boundary condition specified in (1 7) is also non-zero at the boundaries. 
In other words, (18f) results in a non-zero temperature perturbation at the bounding 
walls. However, for a special case where the walls which bound the fluid have a higher 
thermal conductivity and a larger heat capacity than those of the fluid, Sparrow, 
Goldstein & Jonsson (1964) and Busse (1981) both suggest that the temperature 
perturbation of the fluid at the bounding walls is essentially zero. That is, 0 can be 
assumed zero at the boundaries with highly conducting walls. In practice, such a system 
can be realized for air, water or oil under heating or cooling in a channel or pipe with 
walls made of thick highly conducting metal such as copper. For this special case, the 
base function for 9% may be chosen as 

dn(.Y> = (1 -YZ)  P,(y). ( 1 8 d  

In (18), each of the base functions &, 5, and q5n satisfies the boundary conditions and 
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Pn(y) is the Legendre polynomial of order n. Multiplying equations (14)-(16) by test 
functions trn, Crn and $,, respectively, and integrating across the channel yields 

1 N f l  

N N 1 

+'a c dn u, 4rn $n dy = igc c drz J-, $rn 4% dy. (21) 
n=0 n=o 

In (19)-(21), a prime on < or C denotes differentiation with respect to y. The 
integrations are evaluated either by the orthogonality properties of Legendre 
polynomials or by Lobatto quadrature (Davis & Rabinowitz 1984). The above coupled 
equations can be solved by the 'GVLCG' or 'GVCCG' subroutine in the IMSL 
Library. Before the code was used for the thermal instability study, we wanted to make 
sure, as far as possible, that it was verified. There are no experimental or analytical 
results for heated channel flow in the open literature to compare with our predictions, 
so we had to compare with published results for isothermal channel flow for Ra+ 0' 
and Ra 4 0- for buoyancy-assisted and buoyancy-opposed flows, respectively. Our 
isothermal results of Re = 5772.22, a = 1.020 56 and Re = 10000, a = 1 (based on the 
maximum velocity and half-width) with N = 51 in equation (18) agree with those of 
Orszag (1971) to the fifth decimal point. N = 51 is therefore used in the current linear 
stability computation. It is noted that the Reynolds number in the current study is 
based on the mean velocity of the laminar flow while the centreline velocity was 
adopted in Orszag (1971). This is why the Re, is 3848.147 in table 1 in $3.1 instead of 
the well-known 5772.22 given in Orszag (1971). 

2.4. Energy budget analysis 
In order to understand the role played by heat transfer during the flow instability, it 
is necessary to keep track of the turbulent kinetic energy budget for the disturbances. 
The driving mechanisms of flow instability may be determined by the production and 
dissipation of disturbance kinetic energy (Hart 1971 ; Rogers & Yao 1993 b). The 
balance of disturbance kinetic energy for an infinitesimal disturbance is 
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where the angle bracket ( ) implies integration over the volume of the disturbance 
wave. The first term on the right-hand side of (22), E,, represents the shear production 
of turbulent energy which is the product of the Reynolds stress and the mean flow 
strain rate. This shear production is identical to that in isothermal flow. The second 
term, E,, represents the turbulent kinetic energy production due to the work done by 
the thermal buoyant potential of the disturbance temperature field. Therefore the 
contribution to the turbulent disturbance kinetic energy from heat transfer is 
represented by this term. The second term is thus absent in isothermal flow. The last 
term, Ed, represents the dissipation of energy through molecular viscosity. On the 
neutral stability curve (ci = 0), the disturbances are neither growing nor decaying, thus 
the left-hand-side term (differentiation with time) is zero. 

3. Results and discussion 
In addition to Re and Ra, the only other parameter in the system is Pr. A wide range 

of Pr was chosen in this study, starting with 0.7 for most gases, increasing to 7 for 
liquids, and reaching 100 for heavy oils. Because the stable and unstable domains are 
separated by the neutral stability curve (ci = 0), we will basically present the neutral 
stability curves for fluids with various Pr to demonstrate the characteristics of stability 
for the flow. It is noted that ci = c,(Re, Ra, a, /I) for all cases; therefore we will plot the 
neutral stability curves on both (Re,Ra)- and (Re,a)-planes for various typical /I- 
values. We will also give the p-values that is associated with the least stable mode for 
most cases. 

As mentioned previously, there are two ways to specify the temperature 
perturbations of the fluid at the boundaries. In the following we will present results first 
for the zero-temperature-perturbation case which corresponds to systems with thick 
highly conducting bounding walls. In their water experiment Scheele & Hanratty (1962) 
used highly conducting copper as the pipe wall material. The thermal conductivity of 
copper is three orders of magnitude larger than that of water. El-Genk & Rao (1990) 
employed a system where water is heated by stainless-steel tubing. It is therefore 
reasonable to assume that the case of zero temperature perturbation at the wall is 
a good approximation for the experimental system of both Scheele & Hanratty (1962) 
and El-Genk & Rao (1990). Since the motivation of this study is to attempt to explain 
the experimental observations of Scheele & Hanratty (1962) and El-Genk & Rao 
(1990), the following $43.1 and 3.2 will be devoted to the discussion of results for the 
case of zero temperature perturbation on the boundaries. In 93.3, typical results for 
the zero heat flux perturbation will be presented and comparisons between the two 
different temperature perturbation boundary conditions will also be provided. 

3.1. Buoyancy-assistedflow 
First we examine the instability boundary for buoyancy-assisted flow on the (Re, Ra)- 
plane for Pr = 7, shown in the upper portion of figure 3(a). The flow instability 
boundaries are shown for spanwise wavenumbers /I = 0, 1, 2 and 3. It should be 
pointed out that for the channel geometry there is no kinematic condition to require 
that p be an integer. Even though only curves for integer /I-values are plotted we have 
included non-integer /I-values in our computation for the determination of the /I that 
is associated with the least-stable mode. The results suggest that a heated channel flow 
would become unstable for Ra > 16.47 and Re > 40. As a result, fully developed 
heated channel flow is extremely difficult to maintain even under a very mild heating 
condition. The critical Rayleigh number, Ra,, is nearly constant (- 15.7) for Re > 100, 
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FIGURE 3 .  The instability boundaries on the (Re, Ra)-plane for (a )  Pr = 7,  
(b) Pr = 0.7 and Pr = 100. 

therefore there is no inflection point in the base flow because Ra, < 24.38. But for very 
small Reynolds numbers (about 3.9-6.6) Ra, goes through an almost vertical rise from 
50 to 200. As pointed out by Yao (1987a), for stably stratified flow, slow convection 
flow is capable of bringing denser fluid upward into the region of lighter fluid, which 
explains our finding that heated flow becomes unstable even at very low velocities. The 
effect of the spanwise wavenumber, p, was also examined in figure 3 (a)  for both integer 
and non-integer values, where we found that /? = 0 is the least-stable mode. The higher 
the value of p the more stable the mode. For p 2  5 ,  we were unable to find any unstable 
mode for Pr = 7. Next, the (Re, Ra)-plane for Pr = 0.7 and 100 is shown in figure 3(b). 
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FIGURI~ 4. The variation of wavenumber a with Re along the neutral stability curve for buoyancy- 
assisted flows at  Pr = 0.7, Pr = 7 and Pr = 100 (a,  = 1.0206 for isothermal flow). 

The Pr = 100 case is very close to that of Pr = 7 except that it is slightly more unstable 
for Pr = 100. The general trend for Pr = 0.7 is also similar to that of Pr = 7, but there 
is a fundamental difference between the two cases. The base laminar flow does contain 
inflection points in the Pr = 0.7 flows because Ra, is greater than 24.38. This 
fundamental difference in the structure of the laminar base flow causes some drastically 
non-similar trends on the neutral stability curves on the (Re,  a)-plane between Pr = 0.7 
and Pr = 7 flows, which are shown in figure 4. Also, it is noted that p = 0 mode is the 
least stable for all three Prandtl number flows and therefore the least-stable 
disturbances are two-dimensional in the buoyancy-assisted case. 

The linear instability boundary on the (a,  Re)  plane, where a is the wavenumber, for 
all three Prandtl numbers is plotted in figure 4. The curves demonstrate the variation 
of a with respect to Re,. along the neutrally stable curve. It is seen that for p = 0 and 
1, a, decreases monotonically with increasing Reynolds number for Pr = 7 and 100 
and the effect of heating is quite dramatic as compared to the constant critical 
wavenumber of 1.0206 for isothermal channel flow. The wavelength of an unstable 
heated flow is shorter than that of an isothermal flow for high Ra and low Re while it 
is longer for flows with low Ra and high Re. Again, the difference between j3 = 0 and 
p = 1 is very small for Pr = 7 and 100. Furthermore, very similar trends are found 
between Pr = 7 and Pr = 100. For gases (Pr = 0.7), the critical wavenumber for p = 0 
behaves in a similar manner to that for the liquid when the Reynolds number is less 
than about 21 5.  Above this, instead of decreasing continuously with increasing 
Reynolds number as in the liquid case the critical wavenumber rises sharply and then 
quickly levels off to continue a slow climb. Therefore, for gases the unstable 
wavenumber is only slightly higher than that of an isothermal flow for Re > 214. We 
believe that this major difference in the neutrally stable wavenumber between liquids 
and gases for Re > 214 is because there is an inflection point in the base flow in these 
flows of gases but not in the Pv = 7 liquids. As shown in figures 3(a)  and 3(b), the 
neutrally stable curve lies above the line of Ra = 24.38 for Pr = 0.7 but below it for 
Pr = 7 and Re > 13. Inflection points exist only in flows with Ra 3 24.38. 

Those entirely different trends on the (a, Re)-plane for Pr = 0.7 and Pr = 7 fluids for 



40 Y.-C. Chen and J .  N .  Chung 

Y 
FIGURE 5. Eigenfunctions of ti, B and 8 on the neutral stability curve for Pr = I and Re = 25 

and 500. 

Re > 150 as shown in figure 4 could be further explained through the plots of 
eigenfunctions for zi, 9 and 0. Figure 5 presents these eigenfunction curves for Pr = 7 
fluid at two different Reynolds numbers for /3 = 0. As mentioned above, the instability 
in the liquids (Pr = 7) is primarily due to the thermal buoyant force or heat transfer 
effects while velocity disturbances are more responsible for the instability in the 
gaseous fluids (Pr = 0.7). Rogers & Yao (19936) also suggested that for larger-Prandtl- 
number fluids, the flow becomes unstable mainly due to the disruption of the velocity 
profile, induced by the temperature fluctuation. This difference in the causes of 
instability will be verified again in the disturbance energy budget analysis. As expected, 
the magnitudes of the temperature disturbance eigenfunctions are higher than those of 
the velocities for Pr = 7 fluid and generally the opposite holds for Pr = 0.7 fluids (not 
shown in figure 5). 

We would like to suggest that there is a direct link between the value of a, and the 
amplitude of the cross-stream disturbance 9 for Pr = 7 fluids. Based on figure 5 ,  the 
amplitude of B is virtually zero for Re = 500 while the corresponding a, is also 
vanishingly small at 0.048. This implies that for high-Reynolds-number flows, the least- 
stable disturbance is nearly one-dimensional in liquids (Pr = 7) and oils (Pr = 100). 
We could also come to this conclusion based on equation (10) (ia9 + i p s  + d9/dy = 0) 
for the disturbance continuity. In figure 5, at Re = 25 the diffusion mechanism 
dominates the convection for the low-Reynolds-number flow, which results in the 
increase of the amplitude of B to a finite quantity and accordingly the value of a, to 
around 0.8. In fact we found that the value of a, is directly proportional to the 
amplitude of B for Pr = 7 fluids. 

Next the curves for various Reynolds numbers on the (ci,a)-plane are shown in 
figure 6 for gaseous flows (Pr = 0.7). These curves should also shed some light on the 
special characteristics found on the (a, Re)-plane in figure 4 for Pr = 0.7 fluids. In 
figure 4, a, dips to a minimum at Re = 215, therefore we plotted four curves in figure 
6 for Re = 190, 210,215 and 500. It is clear that the peak values of ci associated with 
those curves on the (ci,a)-plane are closely related to the special behaviour of the 
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FIGURE 6. The variation of c, with a for Pr = 0.7 at various Reynolds numbers 

curves on the (a, Re)-plane. For Re = 190 and 500, each curve clearly has only a single 
peak and the a-locations for the peak ci values correspond to the a-values on the (a, 
Re)-plane (a = 0.6 for Re = 190 and a = 1.22 for Re = 500). It is also quite reassuring 
that the curve for Re = 210 shows a tendency for the peak ci position to move 
gradually from the lower-a to the higher-a region. For the Re = 215 case, where the 
vertical rise takes place on the (a, Re)-plane, we found that the a-locations of the two 
ci peaks correspond exactly to the lowest a-value (- 0.58) and the highest a-value 
(- 0.98) on the vertical line at Re = 215 in figure 4. It is clear that there is a direct 
relationship between the peak value of ci on the (c,,a)-plane and the trend of the 
neutrally stable curve on the (Re, a)-plane. 

The wave speed, cr, along the instability boundary is plotted for Pr = 7 in figure 7 
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Pr Re Ra, a, Es Eb E d  Type 
100 100 8.61 0.108 -0.06 1.06 -1.0 TB 
100 500 8.6 0.022 -0.06 1.06 -1.0 TB 
100 1000 8.6 0.011 -0.06 1.06 -1.0 TB 

7 3.97 500 1.64 -0.05 1.05 -1.0 TB 
7 100 15.73 0.24 -0.14 1.14 -1.0 TB 
7 500 15.60 0.048 -0.145 1.145 -1.0 TB 
7 1000 15.60 0.024 -0.145 1.145 -1.0 TB 
7 3848.147 0.0 1.02056 1.00 0.00 -1.0 S 
0.7 28.34 500 1.46 0.40 0.60 -1.0 M 
0.7 30 96.93 1.465 0.30 0.70 -1.0 M 
0.7 100 41.65 0.875 0.075 0.925 - 1.0 TB 
0.7 140 39.21 0.715 0.05 0.95 - 1.0 TB 
0.7 214 37.61 0.577 0.03 0.97 -1.0 TB 
0.7 215 37.60 0.98 0.08 0.92 - 1.0 TB 
0.7 500 32.65 1.22 0.07 0.93 - 1.0 TB 
0.7 1000 30.26 1.355 0.06 0.94 - 1.0 TB 

TABLE 1. Energy budget for the neutral stability curve for buoyancy-assisted flow (TB: 
thermal-buoyant instability; TS : thermal-shear instability; M : mixed instability; S : shear instability). 

for p = 0, 1, 2 and 3. Essentially, the wave speed of the dominant mode p = 0 is 
constant at about 1.3 for Re > 30. The waves travel much faster at low Reynolds 
numbers. Because of close similarity, the wave speed curves for Pr = 0.7 and 100 are 
not shown here. 

As mentioned earlier, the analysis of the energy transfer budget for the neutral 
stability curve could provide some insight into the transport mechanisms during flow 
instability. A summary of the energy budget for buoyancy-assisted flows is given in 
table 1. As mentioned previously for heated confined flows, Rogers & Yao (1993b) 
have identified thermal-shear and thermal-buoyant as the major thermal instabilities. 
Unlike the annulus flow, where the thermal-shear instability prevails for Pr = 1 and 
the thermal-buoyant instability dominates for Pr = 6 and 100, we found that the 
thermal-buoyant instability is the only mode for Prandtl numbers ranging from 0.7 to 
100 in buoyancy-assisted channel flow. Therefore, only for gases, the thermal 
instability types are significantly different for annulus and channel geometries. Another 
important finding is the identification of a mixed mode of instability between the 
thermal-shear and thermal-buoyant instability for flows with Pr = 0.7 and relatively 
low Reynolds numbers which correspond to the almost vertical portion of the neutral 
stability curve on the (Re,&)-plane. This mixed mode initially obtains its energy 
roughly evenly from both shear and buoyant sources. Also it is worth noting that most 
E, values for Pr = 7 fluids are negative and we attribute that to the lack of an inflection 
point in the base flow. E, is positive for all Pr = 0.7 fluids, where an inflection point 
is found in every one of them. 

3.2. Buoyancy-opposed JEow 
The neutral stability curves on the (Re, Ra)-plane for buoyancy-opposed flow at 
Pr = 7areplottedinthelowerportionoffigure3(a). Wefound thatforRe < 641 theleast- 
stable mode for buoyancy-opposed flow belongs to the Rayleigh-Taylor instability. 
We call this least-stable instability a critical Rayleigh-Taylor mode and use the symbol 
RT, to represent it. It will be verified later that the RT, mode is indeed the 
Rayleigh-Taylor-type instability. The characteristics of the RT, mode are that the 
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FIGURE 8. The variation of wavenumber a with Re along the neutral stability curve for 
buoyancy-opposed flows at Pr = 0.7 and Pr = 7 (a,  = 1.0206 for isothermal flow). 

streamwise wavenumber, a, asymptotically approaches zero while the corresponding 
spanwise wavenumber, p, is also vanishingly small. For the RT, mode, the critical 
Rayleigh number, Ra,, and the wave speed are -6.1 and 1.35, respectively. Note that 
the RT, mode is different from the p = 0 mode which is a thermal-shear instability 
with a finite streamwise wavenumber around 1.5. The Rayleigh-Taylor instability with 
streamwise wavenumber asymptotically approaching zero has also been found as the 
least-stable mode for low-Reynolds-number mixed-convection flow in a vertical 
annulus (Rogers & Yao 1993b). For Re > 641, the two-dimensional disturbance 
( p  = 0) mode with a finite value of a becomes the least-stable mode where the I Ra,I 
decreases slightly with increasing Re,. Therefore the least-stable mode for Re < 641 in 
buoyancy-opposed flow is not two-dimensional, while it is two-dimensional with a finite 
non-zero streamwise wavenumber in buoyancy-assisted flow. We also plotted p = 1 ,  
2, 3 curves. Again, for p >  1 the disturbance waves are always more stable. The 
instability boundaries on the (Re, Ra)-plane for Pr = 0.7 and Pr = 100 are shown in 
the lower half of figure 3(b)  where we found very similar trends to those for Pr = 7. 
It is noted that Rae and the wave speed for Pr = 0.7 and 100 also remain the same as 
for Pr = 7 for the RT, mode. It is reasonable to suggest that the instability boundaries 
on the (Re, Ra)-plane are less dependent on the Prandtl number for most gases, liquids 
and heavy oils. For relatively low Reynolds numbers, Re < 654 for Pr = 0.7 and 
Re < 594 for Pr = 100, as shown in table 2, the instability is dominated by the 
Rayleigh-Taylor mode and independent of the fluid type. 

The instability boundaries on the (Re, a)-plane are plotted in figure 8 for Pr = 0.7 
and 7. Very similar trends are found for the two cases. We do not show the Pr = 100 
case because it is also very similar to the Pr = 7 case. Recall that the instability 
boundaries on the (Re, a)-plane for the same Prandtl numbers of 0.7 and 7 but under 
the buoyancy-assisted flow condition are distinctively different (figure 4). This implies 
that the Prandtl number has a much smaller effect on a, in the buoyancy-opposed flow. 
Figure 8 also shows that a, has a jump at Re - 42 for the p = 0 mode. On both sides 
of the jump, a,  decreases with increasing Re; it is larger than that of the isothermal flow 
for Re > 42. It is noted that the trend of a sudden jump of a, for all Prandtl numbers 
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FIGURE 9. The variation of wave speed c, with Ra along the neutral stability curve for /3 = 0 at 
various Prandtl numbers (solid line is associated with the zero heat flux perturbation boundary 
condition for Pr = 7). 
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FIGURE 10. The variation of wave speed c, with Re along the neutral stability 
curve for /3 = 1 at various Prandtl numbers. 

in buoyancy-opposed flow is only found for Pr = 0.7 in buoyancy-assisted flow (figure 
4). Also, after the jump, a, increases with Re in buoyancy-assisted flow. As shown in 
figure 8, the difference between the /3 = 0 mode and the RT, mode is clearly 
demonstrated on the (Re,a)-plane in terms of the magnitude of the streamwise 
wavenumber. For /3 = 1,2  and 3, the critical wavenumbers all show similar trends and 
the Reynolds number at which the critical wavenumber experiences a jump decreases 
with increasing p-value. 

The instability boundaries on the (Ra, c,)-plane are given for ,I3 = 0 in figure 9 and 
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Pr Re Rac a, E, E, E d  Type 
100 50 -6.10 0.00 0.00 1.00 -1.0 RT 
100 500 -6.10 0.00 0.00 1.00 -1.0 RT 
100 625 -6.00 1.356 0.85 0.15 - 1.0 TS 
100 1000 -4.24 1.238 0.90 0.10 -1.0 TS 
100 1750 -2.49 1.137 0.95 0.05 -1.0 TS 
100 2500 -1.71 1.062 0.98 0.02 -1.0 TS 
I 50 -6.10 0.00 0.00 1.00 -1.0 RT 
7 500 -6.10 0.00 0.00 1.00 -1.0 RT 
7 650 -6.04 1.276 0.87 0.13 -1.0 TS 
7 1000 -4.54 1.20 0.92 0.08 - 1.0 TS 
7 1750 -2.72 1.11 0.96 0.04 - 1.0 TS 
7 2500 - 1.54 1.065 0.98 0.02 - 1.0 TS 
7 3848.147 -0.0 1.02056 1.00 0.00 -1.0 S 
0.7 SO -6.10 0.00 0.00 1.00 - 1.0 RT 
0.7 600 -6.10 0.00 0.00 1.00 - 1.0 RT 
0.7 660 -6.06 1.275 0.88 0.12 - 1.0 TS 
0.7 1000 -4.58 1.20 0.92 0.08 -1.0 TS 
0.7 1750 -2.74 1.11 0.96 0.04 - 1.0 TS 
0.7 2500 - 1.54 1.065 0.98 0.02 - 1.0 TS 

TABLE 2. Energy budget for the neutral stability curve for buoyancy-opposed flow (RT: 
Rayleigh-Taylor instability; TS : thermal-shear instability ; S : shear instability). 

on the (Re, c,) plane for /3 = 1 in figure 10. We have covered a wide range of Prandtl 
numbers (Pr = 0.7,7 and 100) and it is apparent that the Prandtl-number dependence 
is relatively minor. On the (Ra,c,)-plane in figure 9, the important finding is that 
cr, stays very close to zero for increasing I Ra 1 and there is a sudden rise at Ra - -40. 
For 0 < 1 Ra I < 40, c, varies between 0.6 and 0.8. In figure 10, there are two 
distinctive regions on t i e  (Re, c,)-plane. The abrupt transition takes place at Re = 257 
for water and at Re = 263 for air. For the lower-Re portion, cTc stays around 1.38 and 
it decreases slowly from 0.75 to 0.65 for the higher-Re portion. 

A summary of the energy budget analysis for buoyancy-opposed flow is given in 
table 2. There are major differences between buoyancy-assisted and buoyancy-opposed 
channel flows in the energy budget analysis. Either the Rayleigh-Taylor instability or 
the thermal-shear instability dominates in buoyancy-opposed flows whereas the 
thermal-buoyant instability is the dominant type in buoyancy-assisted flows. In 
general for Prandtl numbers ranging from 0.7 to 100 in buoyancy-opposed flow, we 
found that the Rayleigh-Taylor instability prevails for low-Re flows, where the energy 
for the disturbances comes solely from the buoyant potential and none from the shear 
production (E ,  = 1 .O and E, = 0). The instability is thermal-shear for higher Reynolds 
numbers and the energy contribution from buoyancy production decreases with 
increasing Reynolds number. It is noted that the instability is still classified as 
thermal-shear instability for Re = 2500, even though the buoyant energy contribution 
is only 2 % or less. These are thermal-shear instabilities rather than shear instabilities 
because the corresponding isothermal flows are linearly stable (Re, = 3848.1 for 
isothermal flow, based on mean velocity). Compared to the instability in mixed- 
convection annulus flow, Rogers & Yao (19936) found that the thermal-buoyant 
instability prevails at Pr = 100 for the low-Re flow and the fraction of energy 
contribution from the buoyancy production is very small at higher Reynolds numbers. 
Again the Prandtl number does not have a visible effect on the relationship between Re 
and the dominant instability type. We may also conclude that the instability in 
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Pr Re 
7 800 
7 800 
7 800 
7 800 
0.7 800 
0.7 800 
0.7 800 
0.7 800 

100 800 
100 800 
100 800 

7 1200 
7 1200 
7 1200 
7 800 
7 800 
7 800 
7 800 

Buoyancy-assisted 

' a  a P (ECJrnax 

100 2.50 0 0.17907 
100 2.40 1 0.16299 
100 2.14 2 0.11642 
100 1.66 3 0.04894 
100 2.48 0 0.17976 
100 2.40 1 0.16360 
100 2.12 2 0.11673 
100 1.62 3 0.04870 
100 2.50 0 0.17961 
100 2.42 1 0.16379 
100 2.16 2 0.11696 
100 2.48 0 0.18636 
100 2.40 1 0.17021 
100 2.12 2 0.12325 
200 2.14 0 0.32643 
200 2.04 1 0.29063 
200 1.76 2 0.19329 
200 1.24 3 0.07400 

Buoyancy-opposed 

Ra 
- 100 
- 100 
- 100 
- 100 
- 100 
- 100 
- 100 
- 100 
- 100 
- 100 
- 100 
- 100 
- 100 
- 100 
- 200 
- 200 
- 200 
- 200 

a P  
2.06 0 
1.96 1 
1.62 2 
0.92 3 
2.06 0 
1.96 1 
1.62 2 
0.90 3 
2.06 0 
1.96 1 
1.62 2 
2.06 0 
1.96 1 
1.62 2 
2.40 0 
2.28 1 
1.98 2 
1.42 3 

(ECJrnax 

1.50601 
1.325 10 
0.81 155 
0.14076 
1.50602 
1.32511 
0.81159 
0.140 61 
1.50602 
1.325 11 
0.81 153 
1.521 27 
1.33992 
0.824 44 

10.87535 
9.92040 
7.11070 
2.93097 

TABLE 3. The maximum amplification rate for various P values for buoyancy-assisted 
and buoyancy-opposed flows. 

buoyancy-opposed flow is less sensitive to the thermal effects as either the 
Rayleigh-Taylor or thermal-shear instability dominates. In buoyancy-assisted flows, 
the instability is more sensitive to the heat transfer because the thermal-buoyant 
instability dominates. 

As reviewed earlier, Scheele & Hanratty (1962) reported that there is a distinctive 
difference in the transition phenomena between buoyancy-assisted and buoyancy- 
opposed pipe flows. Transition to turbulence proceeds gradually in a finite downstream 
distance for buoyancy-assisted flow while it is a sudden and abrupt process in 
buoyancy-opposed flow. Similar phenomena were observed in heated vertical annulus 
flows by El-Genk & Rao (1990). There is no experimental report concerning the tran- 
sition behaviour in heated channel flows. Because of the many similarities between pipe 
and channel flows, we expect different transition patterns for buoyancy-assisted and 
buoyancy-opposed channel flows. Even though linear stability theory is only relevant 
to the onset of the instability and transition process, we would like to offer some 
suggestions for the causes for the observed different transition behaviours. As shown 
before for buoyancy-opposed flow, we found that the wave speed, c,, is diminishingly 
small for 1 Ral 2 40 in heavy oils, I Ral 2 48 in water and I Ra 1 > 70 in air, while 
c, is about 1.29 for buoyancy-assisted flow. As pointed out by Gaster (1962), the 
relationship between the temporal and spatial instabilities may be correlated by 
exchanging the roles of the streamwise coordinate x and the time t as x K c, t. Since c, 
is vanishingly small, the spatial development distance for the disturbance is accordingly 
very short for buoyancy-opposed flow, whereas a finite distance is expected for 
buoyancy-assisted flow due to the finite value of 1.29 for c,. Further supporting 
evidence comes from the disturbance amplification rates. Table 3 lists the maximum 
amplification rates for typical cases of both buoyancy-assisted and buoyancy-opposed 
flows. It is apparent that the amplification rates for buoyancy-opposed flow are one to 
two orders of magnitude higher than those for buoyancy-assisted flow. This difference 
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FIGURE 11. The instability boundaries on the (Re, &)-plane for the zero heat flux perturbation 
boundary condition. (Dashed lines show zero temperature perturbation condition from figure 3). 

in the amplification rates provides further support for the two distinctive flow 
transition patterns. The results in table 3 also indicate that p = 0 is the dominant mode 
in those flows. 

3.3. Zero heat ,flux perturbation boundary condition 
3.3.1. Buoyancy-assistedpows 

In this section, we present typical results for the case where the derivatives of 
temperature perturbation with respect to y at the boundaries are zero but the 
temperature perturbation remains non-zero. For the convenience of discussion, we call 
the zero temperature perturbation boundary condition case A and the zero heat flux 
perturbation case B. First the neutral stability curves for the least-stable ( p  = 0) mode 
buoyancy-assisted flow on the (Re,  Ra)-plane are plotted in the upper portion of figure 
11 as solid lines for case B. For comparison, some results presented before in figure 3 
for case A are repeated as dashed lines in figure 11. The differences between cases A 
and B are most pronounced for the Pr = 0.7 flow. For Re > 410 there is virtually no 
difference. Case B is slightly more unstable for Re in the range of 215 to 410 while case 
A is more unstable in the range of 63 to 215 where the corresponding wavenumber is 
minimum. For Ra > 50 and Re < 63, case B is again more unstable. For Pr = 7, there 
is no difference for Re > 100. Case A is slightly more unstable for Re in the range of 
7.5 to 100. Case B becomes more unstable for Ra > 75. For Pr = 100, essentially there 
is no difference between the two cases for Re > 2. This is as expected, since the 
momentum diffusivity is much larger than the thermal diffusivity for Pr = 100 fluids. 
In summary, for buoyancy-assisted flows, the differences in stability characteristics 
between the two types of temperature perturbation boundary condition are inversely 
proportional to both Re and Pr. The stability boundaries on the (Re,  a)-plane for the 
p = 0 mode are plotted in figure 12. Again we have repeated the corresponding results 
with zero temperature perturbation boundary condition as dashed lines. The differences 
in streamwise wavenumber between cases A and B are very minor for Pr = 7 and 100. 
For Pr = 0.7, the basic trends are similar but local minima of the wavenumbers are 
located at different Reynolds numbers. The minimum wavenumber a, occurs at Re = 
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FIGURE 12. The variation of wavenumber CL with Re along the neutral stability curve for the zero heat 
flux boundary condition (BA: Buoyancy-assisted flow; BO : Buoyancy-opposed flow). Dashed lines 
show zero temperature perturbation condition. 

214 with a value of 0.58 for case A while it occurs at the Reynolds number of about 
87 with a value of 0.8 for case B. Similarly to the (Ra,Re)-plane comparison, the 
differences between cases A and B on the (a, &)-plane diminish for higher Reynolds 
numbers. We also calculated the maximum amplification rates for case B and 
compared them with those of case A listed in table 3. It is found that the maximum 
amplification rates associated with case B agree with those in table 3 to the fourth 
decimal point. From the above discussion, we may conclude that the condition of zero 
heat flux perturbation at the walls produces very limited changes to the stability 
characteristics from those with zero temperature perturbation for buoyancy-assisted 
flow except for Pr = 0.7 fluid at low Reynolds numbers. 

3.3.2. Buoyancy-opposed jaws 
For buoyancy-opposed flow, the neutral stability curves on the (Re, Ra)-plane for 

Pr = 0.7 and 7 are shown in the lower half of figure 11. Again the dashed and solid lines 
represent cases A and B respectively. First we discuss the p = 0 mode where the 
streamwise wavenumbers remain finite. For Pr = 7, there is essentially no difference 
between cases A and B for Re > 70. Case B is slightly more unstable for Reynolds 
numbers less than 70. For Pr = 0.7, again there is no difference for Re > 70. Case B 
is more unstable for the Reynolds number in the range of 8 to 70. Case A becomes 
slightly more unstable when I Ra I is greater than 100. We also plotted the p = 0 neutral 
stability boundaries on the (Re, a)-plane for Pr = 7 in figure 12. It is consistent with the 
(Ra,Re)-plot in that the difference is significant only for Re < 70. It is reasonable to 
conclude that the effects of the temperature perturbation at the walls for buoyancy- 
opposed flows are also limited to lower Reynolds numbers for the p = 0 mode. The 
major difference which is also of practical importance between cases A and B for 
buoyancy-opposed flow is associated with the Rayleigh-Taylor mode of instability. 
Recall that the main characteristic of this mode is that the streamwise wavenumber is 
approaching zero while p is also vanishingly small. The critical Rayleigh number, Ra,, 
shown in figure 11 for the RT, mode also was found to approach zero for case B, while 



The linear stability of mixed convection in a vertical channelflow 49 

it is finite at -6.10 for case A. This result is independent of the Prandtl number. In 
other words, for case B, buoyancy-opposed flow tends to be unstable for any Reynolds 
number because the critical Rayleigh number is approach zero. It is therefore 
significant to note that the only way to maintain a stable buoyancy-opposed flow with 
a constant heat flux at the boundary is to use highly conducting materials for bounding 
walls such that case A can be simulated. The wave speeds and the maximum 
amplification rates, which are important in explaining the different transition patterns 
between buoyancy-assisted and -opposed flows, are also computed for case B. The 
solid line in figure 9 is the wave speed for case B and Pr = 7. The wave speed also 
becomes very small for 1 Ra 1 > 32.2. The maximum amplification rates associated 
with case B were found to agree with those of case A listed in table 4 to third decimal 
point. Thus the differences caused by the zero heat flux perturbation at the walls have 
a rather minor effect on the instability characteristics for the /3 = 0 mode whereas they 
are relatively significant for the Rayleigh-Taylor mode. The zero heat flux perturbation 
produces no major changes in wave speeds and maximum amplification rates. 

4. Conclusions 
The linear stability analysis of mixed convection in a vertical channel with constant 

heat flux imposed on the walls was investigated for two different temperature 
perturbations at the boundaries. For the first case where the bounding walls are made 
of highly conducting materials, zero temperature perturbation was assumed at the 
boundaries; zero heat flux perturbation at the boundaries was assumed for the second 
case. The results in general indicate that the fully developed heated flow is very unstable 
and therefore very difficult to find in nature. 

For the case of zero temperature perturbation at the walls, heated water flow 
(Pv = 7) can become unstable if Ra > 16.47 and Re > 40 for buoyancy-assisted flows 
and I Ra I > 6.1 for buoyancy-opposed flows. The results also show that the two- 
dimensional disturbance with a zero spanwise wavenumber and a finite streamwise 
wavenumber is the most unstable wave in buoyancy-assisted flow. The critical 
wavenumber shows a distinctively different behaviour between the liquids (Pr  = 7 and 
100) and the gases (Pr = 0.7) : the wavenumbers of liquids are very small for Re > 100 
(for Pr = 7, a, = 0.048 at Re = 500 and a, = 0.024 at Re = 1000) and that of air is 
slightly larger than that of the isothermal flow (a, = 1.02056) for Re > 215 in 
buoyancy-assisted flow. This means that the most unstable disturbance is nearly one- 
dimensional for Pr = 7 and 100 at high Reynolds numbers. The energy budget analysis 
for buoyancy-assisted flow indicates that the dominant instabilities for air (Pr = 0.7), 
water (Pr = 7) and oil (Pv = 100) all belong to the thermal-buoyant instability. 

Additionally, the linear stability results for buoyancy-opposed flows under zero 
temperature perturbations at the walls show that for Re < 594-654 the most unstable 
wave was found to be the Rayleigh-Taylor instability with the streamwise wavenumber 
asymptotically approaching zero and the corresponding spanwise wavenumber is also 
vanishingly small. The corresponding critical Rayleigh number and wave speed are 
- 6.10 and 1.35, respectively. The critical streamwise wavenumbers for both water and 
air show very similar behaviour in buoyancy-opposed flow, although they have 
distinctly different behaviour in buoyancy-assisted flow. The curves of the critical 
wavenumber for /3 = 0, 1, 2 and 3 abruptly change at certain Reynolds numbers. 
Because the instability characteristics found for Pr = 0.7, 7 and 100 are all similar, it 
may be concluded that the Prandtl number has little effect on buoyancy-opposed flow 
instability. When the absolute value of the critical Rayleigh number is greater than a 
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certain value between 40 and 70, the wave speed of the instability approaches zero for 
the two-dimensional disturbance (/3 = 0). Based on the relationship of the temporally 
increasing and spatially increasing disturbances (by exchanging the roles of the 
streamwise coordinate and the time), we found that the required distance for the 
disturbance development in buoyancy-opposed flow is much shorter than that of 
buoyancy-assisted flow, which might help explain why buoyancy-opposed flows go 
through transition suddenly and buoyancy-assisted flows go through transition 
gradually. That the disturbance amplification rates of buoyancy-opposed flow are 
generally one to two orders of magnitude higher than those of buoyancy-assisted flow 
provides further support for the different transition patterns. The energy budget 
analysis for buoyancy-opposed flow shows that the instability for lower Reynolds 
number flows in air, water and heavy oil is of the Rayleigh-Taylor type. For higher 
Reynolds numbers, the dominant instability switches to the thermal-shear instability 
and the energy contribution from buoyancy production decreases with increasing 
Reynolds number. 

The instability characteristics of zero heat flux perturbations on the boundaries are 
in general very similar to those of the zero temperature perturbation case for 
buoyancy-assisted flows. The two cases are practically identical for higher Reynolds 
numbers. At lower Reynolds numbers, only minor differences were found and the 
differences decrease with increasing Prandtl number. For buoyancy-opposed flow, the 
differences are minor for the thermal-shear mode of instability between the two cases. 
Major differences were found for the Rayleigh-Taylor instability. The critical Rayleigh 
number is -6.10 for zero temperature perturbation while it is approaching zero for 
zero heat flux perturbation. The maximum amplification rates were found insensitive 
to the different temperature perturbations on the boundaries for both assisted and 
opposed flows. 
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